

© О.В. Орлова, В.Н. Ослопов, С.А. Сидуллина, 2013 УДК 577.352.4:547.268.1

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВЕЩЕСТВ С₁₄ И С₁₆, ОБЛАДАЮЩИХ АНТИБАКТЕРИАЛЬНЫМ И ФУНГИЦИДНЫМ ДЕЙСТВИЕМ, НА КЛЕТОЧНУЮ ПРОНИЦАЕМОСТЬ У ЛИЦ РАЗНЫХ КВАРТИЛЕЙ NA⁺-LI⁺-ПРОТИВОТРАНСПОРТА

ОЛЬГА ВАЛЕРИАНОВНА ОРЛОВА, аспирант кафедры фармации ФПК и ППС ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, тел. 8-960-043-43-34, e-mail: olqa570821@yandex.ru

ВЛАДИМИР НИКОЛАЕВИЧ ОСЛОПОВ, докт. мед. наук, профессор, зав. кафедрой пропедевтики внутренних болезней ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, тел. 8-905-316-25-35, e-mail: KPVBol@yandex.ru

СВЕТЛАНА АНАТОЛЬЕВНА СИДУЛЛИНА, канд. фарм. наук, доцент кафедры фармацевтической химии с курсами аналитической и токсикологической химий ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, тел. 8-927-441-94-66, e-mail: sid svetlana@mail.ru

Реферат. *Цель* исследования – сравнительное изучение влияния новых биологически активных веществ С₁₄ (трифенилтетрадецилфосфония бромида) и С₁₆ (трибутилгексадецилфосфония бромида) на проницаемость мембран клеток по Na⁺ путем определения скорости Na⁺-Li⁺-противотранспорта в мембране эритроцита с позиции различного ее исходного состояния. На основе полученных данных будет проводиться выбор биологически активного вещества для создания лекарственной формы с антибактериальным, фунгицидным действием, наиболее эффективной для индивидуумов I, III и IV квартилей скорости Na⁺-Li⁺-противотранспорта. Методы. Исследована кровь 15 здоровых добровольцев с различным квартильным распределением по скорости № +-Li+противотранспорта в мембране эритроцита: І квартиль (5 человек) – низкая проницаемость, III квартиль (5 человек) – умеренно высокая, IV квартиль (5 человек) – высокая проницаемость. Результаты. На исследуемых, принадлежащих к I квартилю скорости Na⁺-Li⁺-противотранспорта, С₁₄ не оказывает влияния на проницаемость мембран эритроцитов по Na⁺, а при введении C₁₆ в концентрациях 0,001 и 0,005 мкМ отмечено повышение проницаемости по Na⁺; у лиц III квартиля скорости Na⁺-Li⁺-противотранспорта С₁₄ и C₁₆ в дозах 0,001 и 0,005 мкМ увеличивают проницаемость мембран эритроцитов по Na⁺. У исследуемых, принадлежащих к IV квартилю скорости Na⁺-Li⁺-противотранспорта, биологически активное вещество С₁₄ в дозе 0,05 мкМ уменьшает проницаемость мембран эритроцитов, у биологически активного вещества C_{16} в концентрациях 0,001 и 0,005 мкМ отмечено повышение проницаемости по № . Это свидетельствует о том, что более эффективным в качестве лекарственного вещества будет вещество С₁₆. Вывод. Изменение проницаемости клеточной мембраны по натрию под влиянием веществ C_{14} и C_{16} зависит от исходного генетически детерминированного состояния клеточной мембраны.

Ключевые слова: проницаемость мембран эритроцитов, трифенилтетрадецилфосфония бромид, трибутилгексадецилфосфония бромид, Na⁺-Li⁺-противотранспорт.

COMPARATIVE RESEARCH OF INFLUENCE OF SUBSTANCES OF C₁₄ AND C₁₆ POSSESSING ANTIBACTERIAL AND FUNGICIDE ACTION ON CELLULAR PERMEABILITY AT PERSONS OF DIFFERENT QUARTILES OF NA⁺-LI⁺- COUNTERTRANSPORT

OLGA V. ORLOVA, VLADIMIR N. OSLOPOV, SVETLANA A. SIDULLINA

Abstract. Research objective – comparative studying of influence new biologically active substances of C_{14} (triphenyltetradecylphosphonium bromide) and C_{16} (tributilgeksadecylphosphonium bromide) on permeability of membranes of cages on Na $^+$ by determination of speed of Na $^+$ -Li $^+$ -countertransport in an erythrocyte membrane from a position of its various initial condition. On the basis of the obtained data biologically active agent choice for creation of a medicinal form with antibacterial, fungicide action, the most effective for individuals of I, III and IV quartiles of speed of Na $^+$ -Li $^+$ -countertransport will be carried out. *Methods.* Blood of 15 healthy volunteers with various quartile distribution of speed of Na $^+$ -Li $^+$ -countertransport in an erythrocyte membrane is investigated: The I quartile (5 people) – low permeability, the III quartile (5 people) – moderately high, the IV quartile (5 people) – high permeability. *Results.* On investigated, belonging to the I quartile of speed of Na $^+$ -Li $^+$ -countertransport, C_{14} has no impact on permeability of membranes of erythrocytes on Na $^+$, and at C_{16} introduction in concentration of 0,001 and 0,005 μ M permeability increase on Na $^+$ is noted; faces of the III quartile have Na $^+$ -Li $^+$ -countertransport of C_{14} and C_{16} in doses of 0,001 and 0,005 μ M increase

permeability of membranes of erythrocytes on Na * . At investigated, belonging to the IV quartile of speed of Na * -Li * -countertransport, biologically active agent C $_{14}$ in a dose of 0,05 μ M reduces permeability of membranes of erythrocytes, at biologically active agent C $_{16}$ in concentration of 0,001 and 0,005 μ M permeability increase on Na * is noted. It testifies that the substance C $_{16}$ will be more effective as medicinal substance. *Conclusions*. Change of permeability of a cellular membrane on sodium under the influence of substances of C $_{14}$ and C $_{16}$ depends on the initial genetically determined condition of a cellular membrane.

Key words: erythrocyte membrane permeability, triphenyltetradecylphosphonium bromide, tributilgeksadecylphosphonium bromide, Na*-Li*-countertransport.

 ${f A}$ ктуальность. Биологически активные вещества (БАВ) ${\bf C}_{14}$ и ${\bf C}_{16}$ синтезированы на кафедре высокомолекулярных и элементоорганических соединений Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета. Их фармакологические свойства изучались на кафедре высокомолекулярных и элементоорганических соединений. Доказан антибактериальный, фунгицидный фармакологический эффект этих БАВ [1].

Один из факторов, определяющих биодоступность лекарственных форм, — это интенсивность высвобождения из них лекарственных веществ, которая является также одним из критериев выбора оптимального состава [2]. Кинетику высвобождения лекарственного вещества из лекарственных форм изучают методом равновесного диализа через полупроницаемую мембрану.

В настоящее время для изучения проницаемости стали активно использовать мембраны клеток крови. В клинической практике можно оценивать проницаемость клеточной мембраны по Na⁺, изучая так называемую облегченную диффузию Na⁺, осуществляемую белком-переносчиком, т.е. Na⁺-Li⁺-противотранспорт (Na⁺-Li⁺-ПT) по методике M. Canessa et al. [3]. Важно отметитить, что Na⁺-Li⁺-ПT на 80% генетически детерминирован.

В.Н. Ослоповым [4, 5] были определены границы квартилей (КВ) популяционного (суммарно у мужчин и женщин) распределения величин скорости Na⁺-Li⁺-ПТ в мембране эритроцита [в микромолях Li на 1 л клеток [эритроцитов] в час (в мкМ Li)]: I КВ — 38—203, II КВ — 204—271, III КВ — 272—345, IV КВ — 346—730. Условно считается, что величины скорости Na⁺-Li⁺-ПТ I КВ соответствуют низкой проницаемости по Na⁺, II КВ — средней, III КВ — умеренно высокой, IV КВ — высокой проницаемости по Na⁺.

Цель исследования — сравнительное изучение влияния новых БАВ С $_{14}$ (трифенилтетрадецилфосфония бромида) и С $_{16}$ (трибутилгексадецилфосфония бромида) на проницаемость мембран клеток по Na $^+$ путем определения скорости Na $^+$ -Li $^+$ -ПТ в мембране эритроцита с позиции ее различного исходного генетического состояния. На основе полученных данных будет проводиться выбор БАВ для создания лекарственной формы с антибактериальным, фунгицидным и ранозаживляющим действием, наиболее эффективной для индивидуумов I, III и IV КВ скорости Na $^+$ -Li $^+$ -ПТ.

Материал и методы. Исследована кровь 15 здоровых добровольцев с различным квартильным распределением величин скорости Na⁺-Li⁺-противотранспорта в мембране эритроцита: I квартиль (5 чел.) — низкая проницаемость, III квартиль (5 чел.) — умеренно высокая, IV квартиль (5 чел.) — высокая проницаемость. Ранее нами были подобраны параметры определения скорости Na⁺-Li⁺-ПТ

в мембране эритроцита применительно к задачам исследования и концентрации вещества для исследования *in vitro** [6, 7].

Изучали влияние различных концентраций исследуемых веществ на скорость Na⁺-Li⁺-ПТ в мембране эритроцита in vitro. Определение скорости Na⁺-Li⁺-ПT в мембране эритроцита (в микромолях лития на 1 л клеток в час) проводили по методу М. Canessa et al. [3], при котором изучали (путем определения концентрации ионов) обмен внутриклеточного лития в загруженных этим ионом клетках на внеклеточный натрий и магний из среды инкубации. Концентрацию лития регистрировали методом атомной абсорбционной спектрофотометрии в эмиссионном режиме (СА-455). Кровь в количестве 3 мл забирали из вены самотеком в пластиковые пробирки, смоченные гепарином (20 ЕД на 1 мл крови), содержимое перемешивали, пробирки помещали в контейнер с тающим льдом. Исследование состояло из следующих этапов: отделение эритроцитов, промывание эритроцитов, прединкубация (3 ч), промывание эритроцитов, инкубация (1 ч), определение концентрации лития, вычисление конечного результата.

Исследуемое вещество в различных концентрациях вносили в среду В (среда с Na^+ при одночасовой инкубации). Исследования проводили со следующими концентрациями веществ: 0,001; 0,005; 0,01; 0,025 и 0,05 мкМ. Оценку влияния изучаемого вещества на проницаемость клеточных мембран по Na^+ проводили путем подбора концентрации, которая не вызывала гемолиза эритроцитов (гемолиз определяли визуально). Средняя величина скорости Na^+ - Li^+ - ΠT у людей с I KB составила (188 ± 8) мкМ Li; у людей с II KB — (337 ± 5) мкМ Li; у людей с IV KB — (568 ± 5) мкМ Li (межквартильно, p<0,05).

Результаты и их обсуждение. Исследование вещества C_{14} . Изменение скорости $Na^*-Li^*-\Pi T$ в мембране эритроцита под влиянием БАВ C_{14} зависит от исходной генетически детерминированной проницаемости мембраны. У исследуемых, принадлежащих к III квартилю скорости $Na^*-Li^*-\Pi T$ (исходная проницаемость умеренно высокая), при внесение в среду БАВ C_{14} в концентрациях 0,001 и 0,005 мкМ отмечено повышение проницаемости по Na^* . У исследуемых, принадлежащих к IV квартилю скорости $Na^*-Li^*-\Pi T$, при внесение в среду БАВ C_{14} в концентрациях 0,001 и 0,005 мкМ это вещество не оказало влияния на проницаемость по Na^* , в то же время при концентрации 0,05 мкМ проницаемость по Na^* уменьшилась ($maбn.\ 1,\ puc.\ 1,\ 2$).

Таким образом, у исследуемых, принадлежащих к I КВ скорости $Na^+-Li^+-\Pi T,\ C_{14}$ не оказывает влияния на проницаемость мембран эритроцитов по Na^+ .

^{*} Заявка 2012101527. Российская Федерация, МПК G01N 33/50 «Способ оценки влияния лекарственных веществ на проницаемость клеточных мембран по натрию» (РФ). № 2012101527/15; заявл.16.01.2012; опубл. 10.06.2012. Бюл. № 16 (решение о выдаче патента от 20.05.2013 г.).

Влияние фармакологического БАВ С₁₄ на скорость Na⁺-Li⁺-ПТ в мембране эритроцита (в мкМ Li, M±m) у индивидуумов I, III, IV квартилей скорости Na⁺-Li⁺-ПТ

№ квартиля	Исходная величина скорости Na ⁺ -Li ⁺ -ПТ	Концентрация вещества C ₁₄ в мкМ					
		0,001	0,005	0,010	0,025	0,05	
I	188±8	204±12	205±6	177±9	194±4	193±2	
III	337±5	430±27*	381±5*	359±7	355±8	343±7	
IV	568±5	588±6	550±9	588±4	575±10	465±6*	

^{*} Достоверные различия с исходным значением скорости Na⁺-Li⁺-ПТ (*p*<0,05).

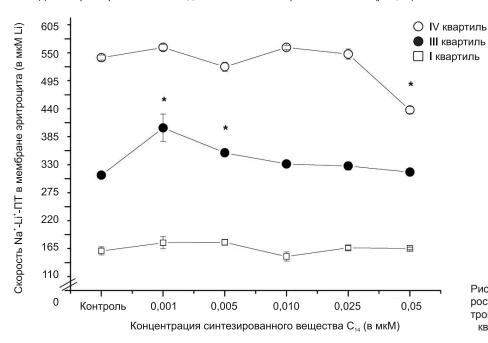


Рис. 1. Влияние БАВ C_{14} на скорость Na⁺-Li⁺-ПT в мембране эритроцита у индивидуумов I, III, IV квартилей скорости Na⁺-Li⁺-ПT

Таблица 2 Влияние фармакологического БАВ С₁6 на скорость №-Li⁺-ПТ в мембране эритроцита (в мкМ Li, М±m) у индивидуумов I, III, IV квартилей скорости №-Li*-ПТ

		,	· ·	<u> </u>			
№ квартиля	Исходная величина	Концентрация вещества С ₁₆ в мкМ					
	скорости Na⁺-Li⁺-ПТ	0,001	0,005	0,010	0,025	0,05	
I	188±8	358±14*	298±6*	267±19	Гемолиз	Гемолиз	
III	337±5	443±39*	441±42*	369±20	Гемолиз	Гемолиз	
IV	568±5	668±6*	642±5*	563±1	Гемолиз	Гемолиз	

^{*} Достоверные различия с исходным значением скорости Na⁺-Li⁺-ПT (p<0,05).

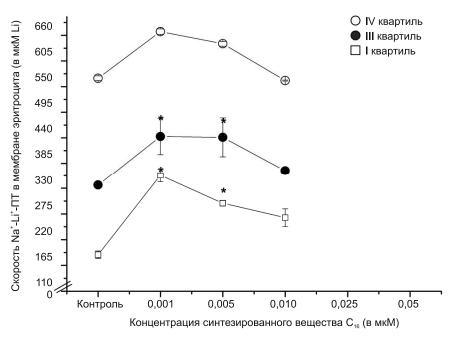


Рис. 2. Влияние БАВ С $_{16}$ на скорость Na⁺-Li⁺-ПT в мембране эритроцита у индивидуумов I, III, IV квартилей скорости Na⁺-Li⁺-ПT

При введении C_{16} в концентрациях 0,001 и 0,005 мкМ отмечено повышение проницаемости по Na⁺; у лиц III КВ скорости Na⁺-Li⁺-ПT в дозах 0,001 и 0,005 мкМ C_{14} и C_{16} увеличивают проницаемость мембран эритроцитов по Na⁺. У исследуемых, принадлежащих к IV КВ скорости Na⁺-Li⁺-ПT, БАВ C_{14} в дозе 0,05 мкМ уменьшает проницаемость мембран эритроцитов, у БАВ C_{16} в концентрациях 0,001 и 0,005 мкМ отмечено повышение проницаемости по Na⁺. Это свидетельствует о том, что более эффективным в качестве лекарственного вещества будет вещество C_{16} .

Выводы:

- 1. Изменение проницаемости клеточной мембраны по натрию под влиянием веществ C_{14} и C_{16} зависит от исходного генетически детерминированного состояния клеточной мембраны.
- 2. Трифенилтетрадецилфосфония бромид (C_{14}) увеличивает проницаемость мембран эритроцитов по Na^+ у исследуемых, принадлежащих к III квартилю скорости Na^+ -Li $^+$ -ПТ (в дозах 0,001 и 0,005 мкМ), уменьшает проницаемость мембран эритроцитов по Na^+ у исследуемых, принадлежащих к IV квартилю скорости Na^+ -Li $^+$ -ПТ (в дозе 0,05 мкМ), и не оказывает влияния у лиц, относящихся к I квартилю скорости Na^+ -Li $^+$ -ПТ.
- 3. Трибутилгексадецилфосфония бромид (C_{16}) одинаково влияет на скорость Na*-Li*-ПT в мембране эритроцита у исследуемых, принадлежащих к I, III и IV квартилям скорости Na*-Li*-ПТ. У людей с исходно низкой проницаемостью по Na* (I квартиль), у лиц с исходно умеренно высокой проницаемостью по Na* (III квартиль) и у лиц с исходно высокой проницаемостью по Na* (IV квартиль) вещество C_{16} (в дозах 0,001 и 0,005 мкМ) увеличивает скорость Na*-Li*-противотранспорта.
- 4. Для создания лекарственной формы с антибактериальным, фунгицидным и ранозаживляющим действием наиболее эффективным для индивидуумов I, III и IV КВ скорости Na $^+$ -Li $^+$ -ПТ рекомендуется биологически активное вещество C_{16} трибутилгексадецилфосфония бромид.

ЛИТЕРАТУРА

- Галкина, И.В. Взаимодействие солей фосфония с липидными компонентами мембран / И.В. Галкина, Н.Б. Мельникова, Е.В. Тудрий [и др.] // Фармация. – 2009. – № 4. – С. 35–38.
- 2. Овчинникова, Л.К. О взаимодействии лекарственных средств (часть I) / Л.К. Овчинникова, Р.И. Ягудина // Российские аптеки. 2006. № 10/2. С. 23–25; № 11/1. С. 26–27.
- Canessa, M. Increased sodium-lithium countertransport in red cells of patients with essential hypertension / M. Canessa, N. Adragna, H. Solomon [et al.] // New Engl. J. Med. – 1980. – Vol. 302. – P. 772–776.
- Ослопов, В.Н. Клиническое значение определения ионтранспортных функций клеточных мембран при гипертонической болезни и ее церебральных осложнениях / В.Н. Ослопов, А.Т. Заббарова, Э.И. Богданов // Казан. мед. журнал. 2000. Т. XXXI, № 3. С. 211–215.
- Ослопов, В.Н. Скорость натриево-литиевого противотранспорта в мембране эритроцита у часто болеющих детей / В.Н. Ослопов, О.И. Пикуза, Х.М. Вахитов, А.А. Кораблёва // Педиатрия. – 2006. – № 3. – С. 21–24.
- Орлова, О.В. Влияние новых синтезированных веществ С₁₀, С₁₂, С₁₄, С₁₆, С₁₈ на проницаемость клеточных мембран для ионов натрия в модели *in vitro* / О.В. Орлова, В.Н. Ослопов, С.А. Сидуллина // Казан. мед. журнал. 2012. Т. XCIII, № 3. С. 505–507.

- Орлова, О.В. Влияние трифенилтетрадецилфосфония бромида на скорость Na⁺-Li⁺-противотранспорта в мембране эритроцита у пациентов с генетически различной проницаемостью мембран по натрию / О.В. Орлова, В.Н. Ослопов, С.А. Сидуллина // Казан. мед. журнал. – 2012. – T. XCIV, № 5. – С. 789–791.
- Овчинникова, Л.К. О взаимодействии лекарственных средств (часть II) / Л.К. Овчинникова, Р.И. Ягудина // Российские аптеки. – 2006. – № 11/1. – С. 26–27.
- Орлова, О.В. Исследование влияния диметилсульфоксида на проницаемость клеточных мембран / О.В. Орлова, С.Н. Егорова, В.Н. Ослопов // Казан. мед. журнал. – 2011. – Т. XCII, № 6. – С. 901–904.
- Постнов, Ю.В. Первичная гипертензия как патология клеточных мембран / Ю.В. Постнов, С.Н. Орлов. – М.: Медицина, 1987. – 192 с.
- Fetal mouse skin heals scarlessly in a chick chorioallantoic membrane model system. – Carre AL – Ann Plast Surg – 01-JUL-2012; 69(1): 85-90 (MEDLINE® is the source for the citation and abstract of this record).
- The oxidative damage of butenolide to isolated erythrocyte membranes. – Wang YM – Toxicol In Vitro – 01-AUG-2007; 21(5): 863-9 (MEDLINE® is the source for the citation and abstract of this record).

REFERENCES

- Galkina, I.V. Vzaimodeistvie solei fosfoniya s lipidnymi komponentami membran / I.V. Galkina, N.B. Mel'nikova, E.V. Tudrii [i dr.] // Farmaciya. – 2009. – № 4. – S. 35–38.
- Ovchinnikova, L.K. O vzaimodeistvii lekarstvennyh sredstv (chast' I) / L.K. Ovchinnikova, R.I. YAgudina // Rossiiskie apteki. – 2006. – № 10/2. – S. 23–25; № 11/1. – S. 26–27.
- Canessa, M. Increased sodium-lithium countertransport in red cells of patients with essential hypertension / M. Canessa, N. Adragna, H. Solomon [et al.] // New Engl. J. Med. – 1980. – Vol. 302. – P. 772–776.
- Oslopov, V.N. Klinicheskoe znachenie opredeleniya iontransportnyh funkcii kletochnyh membran pri gipertonicheskoi bolezni i ee cerebral'nyh oslozhneniyah / V.N. Oslopov, A.T. Zabbarova, E.I. Bogdanov // Kazan. med. zhurnal. – 2000. – T. XXXI, № 3. – S. 211–215.
- Oslopov, V.N. Skorost' natrievo-litievogo protivotransporta v membrane eritrocita u chasto boleyuschih detei / V.N. Oslopov, O.I. Pikuza, H.M. Vahitov, A.A. Korablyova // Pediatriya. – 2006. – № 3. – S. 21–24.
- Orlova, O.V. Vliyanie novyh sintezirovannyh veschestv S₁₀, S₁₂, S₁₄, S₁₆, S₁₈ na pronicaemosť kletochnyh membran dlya ionov natriya v modeli *in vitro* / O.V. Orlova, V.N. Oslopov, S.A. Sidullina // Kazan. med. zhurnal. 2012. T. XCIII, Nº 3 S. 505–507
- Orlova, O.V. Vliyanie trifeniltetradecilfosfoniya bromida na skorost' Na⁺-Li⁺-protivotransporta v membrane eritrocita u pacientov s geneticheski razlichnoi pronicaemost'yu membran po natriyu / O.V. Orlova, V.N. Oslopov, S.A. Sidullina // Kazan. med. zhurnal. – 2012. – T. XCIV, № 5. – S. 789–791.
- Ovchinnikova, L.K. O vzaimodeistvii lekarstvennyh sredstv (chast' II) / L.K. Ovchinnikova, R.I. Yagudina // Rossiiskie apteki. – 2006. – № 11/1. – S. 26–27.
- Orlova, O.V. Issledovanie vliyaniya dimetilsul'foksida na pronicaemost' kletochnyh membran / O.V. Orlova, S.N. Egorova, V.N. Oslopov // Kazan. med. zhurnal. – 2011. – T. XCII, № 6. – S. 901–904.
- Postnov, Yu.V. Pervichnaya gipertenziya kak patologiya kletochnyh membran / Yu.V. Postnov, S.N. Orlov. – M.: Medicina 1987 – 192 s
- Fetal mouse skin heals scarlessly in a chick chorioallantoic membrane model system. – Carre AL – Ann Plast Surg – 01-JUL-2012; 69(1): 85-90 (MEDLINE® is the source for the citation and abstract of this record).
- The oxidative damage of butenolide to isolated erythrocyte membranes. – Wang YM – Toxicol In Vitro – 01-AUG-2007; 21(5): 863-9 (MEDLINE® is the source for the citation and abstract of this record).