УДК 616.61-009.12

ОСОБЕННОСТИ ГИПЕРТРОФИИ ЛЕВОГО ЖЕЛУДОЧКА И ВАРИАНТЫ РЕМОДЕЛИРОВАНИЯ МИОКАРДА У ПАЦИЕНТОВ С ГИПЕРТОНИЧЕСКОЙ НЕФРОПАТИЕЙ

ОЛЬГА НИКОЛАЕВНА СИГИТОВА, докт. мед. наук, профессор, зав. кафедрой общей врачебной практики ГБОУ ВПО «Казанский государственный медицинский университет», главный нефролог МЗ РТ, Казань, Россия, e-mail osigit@rambler.ru

ЭЛЬВИРА ИРЕКОВНА САУБАНОВА, соискатель кафедры общей врачебной практики ГБОУ ВПО «Казанский государственный медицинский университет», кардиолог ЗАО «КДЦ Авиастроительного района г. Kaзaни», e-mail elvirabik@mail.ru

Реферат. Изучены частота, особенности формирования гипертрофии левого желудочка (ГЛЖ) и ремоделирования миокарда у 120 пациентов от 32 до 80 лет с гипертонической болезнью (ГБ) II–III стадии (длительность 11,3 года) в 2 группах: без гипертонической нефропатии (Гн) и с гипертонической нефропатией; в 2 подгруппах больных с Гн: с протеинурическим (ПУ) и с непротеинурическим (неПУ) вариантом. У больных с Гн изменение геометрии миокарда и концентрическая гипертрофия миокарда встречались чаще чем без Гн (соответственно на 25 и 20%). Толщина межжелудочковой перегородки (ТМЖП) и толщина задней стенки левого желудочка сердца (ТЗСЛЖ) у больных с Гн преобладали: $(1,17\pm0,03)$ см и $(1,08\pm0,018)$ см, $(1,2\pm0,02)$ см и $(1,05\pm0,017)$ см соответственно, p<0,05. Масса миокарда левого желудочка (ММЛЖ) и индекс (ИММЛЖ) с Гн были выше, чем без Гн соответственно: $(208,4\pm7,4)$ г и $(231,3\pm8,3)$ г, $(128,3\pm6,5)$ г/м² и $(118,62\pm9,47)$ г/м² (p<0,05). Концентрическая гипертрофия миокарда при ПУ варианте Гн встречались чаще по сравнению с неПУ (72 и 8%). Полученные результаты свидетельствуют о большей частоте, степени ГЛЖ и ремоделирования миокарда при наличии Гн, чем без нее, а при ПУ варианте Гн по сравнению с неПУ.

Ключевые слова: гипертрофия левого желудочка, ремоделирование, гипертоническая нефропатия, гипертоническая болезнь.

FEATURES HYPERTROPHY OF LEFT VENTRICULAR AND VARIATIONS REMODELING MYOCARDIUM IN PATIENTS WITH HYPERTENSIVE NEPHROPATHY

OLGA N. SIGITOVA, ELVIRA I. SAUBANOVA

Abstract. The incidence, characteristics of the formation of left ventricular hypertrophy (LVH) and myocardial remodeling in 120 patients 32–80 years with essential hypertension (EH) II–III stage (duration 11,3 years) in 2 groups: without hypertensive nephropathy (Hn) and with Hn, and in 2 subgroups of patients: with proteinuric (PU) and a non-empty goal. Patients with Hn changing the geometry and concentric hypertrophy of myocardial infarction occurred more frequently than those without Hn (respectively 25 and 20%). The thickness of the interventricular septum (IVST) and the rear wall of the left ventricle, and (TZSIv) in patients with predominated Hn: $(1,17\pm0,03)$ cm and $(1,08\pm0,018)$ cm, $(1,2\pm0,02)$ cm and $(1,05\pm0,017)$ cm respectively, p < 0,05. Left ventricular mass (LVM) and the index (LVMI) with Hn were higher than those without Hn, respectively: $(208,4\pm7,4)$ g and $(231,3\pm8,3)$ g, $(128,3\pm6,5)$ g/m² and $(118,62\pm9,47)$ g/m² (p < 0,05). Concentric hypertrophy with PU variant Hn occurred more frequently in comparison with non-empty (72 and 8%). The results showed a higher frequency, the degree of left ventricular hypertrophy and remodeling in the presence of Hn than without it, and at PU version of Hn – compared to non-PU.

Key words: hypertrophy of the left ventricle, remodeling, hypertensive nephropathy, hypertensive disease.

В последние десятилетия возрос интерес к кардиоренальным взаимоотношениям при заболеваниях почек и сердечно-сосудистой системы, в частности при артериальной гипертонии (АГ). При АГ с самого начала заболевания в патологический процесс вовлекаются жизненно важные органы, в том числе почки, которые, с одной стороны, являются органом-мишенью при ГБ, с другой – участвуют в поддержании и прогрессировании АГ. Поражение почек при АГ проявляется развитием гипертонической нефропатии (Гн), которая имеет прогрессирующий характер, с развитием в финале терминальной почечной недостаточности [2, 5, 12, 14]. Ранним признаком вовлечения почек в патологический процесс при АГ является микроальбуминурия (МАУ), поздним — протеинурия (ПУ) > 300 мг/сут, которые отражают степень нарушения проницаемости почечной мембраны [3]. Однако критерием ХБП после принятия в 2002 г.

классификации хронической болезни почек (ХБП) является также снижение СКФ менее 60 мл/мин при отсутствии в почке структурных нарушений и парциальных дисфункций [1, 7, 15, 16]. В последние годы кроме ПУ варианта Гн выявлен непротеинурический (неПУ) вариант, который характеризуется только снижением СКФ [3]. При обоих вариантах Гн формируется хроническая болезнь почек (ХБП).

ХБП способствуют прогрессированию сердечнососудистых заболеваний (ССЗ), увеличивает сердечнососудистую и общую смертность. Риск смерти от заболеваний сердца и сосудов у больных с терминальной почечной недостаточностью в 10–15 раз выше, чем в популяции. Таким образом, формирование и прогрессирование ССЗ и заболеваний почек находятся в непосредственной связи и параллельной зависимости. Наличие МАУ и снижение СКФ рассматриваются в качестве маркеров неблагоприятного прогноза ССЗ и являются отражением получившей распространение в последнее время концепции кардиоренальных взаимоотношений [4, 6, 8, 9, 10, 11, 13].

Подавляющее большинство исследований посвящено изучению кардиоренальных взаимоотношений на III—V стадиях ХБП при протеинурическом варианте Гн, когда частота сердечно-сосудистых осложнений возрастает в геометрической прогрессии (Волгина Г.В., 2000; Томилина Н.А., 2007; Levin A.V., 2003; Guerin A.P., 2004; London G.M. et al., 2004). В доступной нам литературе мы не встретили работ, посвященных изучению механизмов формирования ГЛЖ и ремоделирования миокарда и особенностей кардиальных нарушений в зависимости от ПУ и неПУ варианта Гн.

Целью исследования явилось изучение особенностей формирования ГЛЖ и вариантов ремоделирования миокарда у пациентов с ПУ и неПУ вариантом Гн. Поставлена задача проанализировать частоту развития ГЛЖ у пациентов с Гн и без Гн и изучить виды ремоделирования у пациентов с ПУ и неПУ вариантами Гн.

Материал и методы. Под наблюдением находилось 120 пациентов с АГ II—III стадии, не страдающих сахарным диабетом и не имеющих хронических заболеваний почек в анамнезе (из них 49 больных с Гн) в возрасте от 26 до 80 лет (53,5 \pm 0,9), из них женщин 46 (38%) и мужчин 74 (62%). Длительность ГБ составила 11,3 года.

Больные ГБ были поделены на 2 подгруппы в зависимости от наличия или отсутствия признаков ХБП: 1-я подгруппа (наблюдения) – 71 больной ГБ от 32 до 80 лет (М \pm m=54,8 \pm 1,2) без Гн, М/Ж – 43/28; 2-я подгруппа – 49 больных ГБ в возрасте от 26 до 78 лет (М \pm m=51,8 \pm 1,4) с Гн, М/Ж – 30/19. Подгруппы были сопоставимы по полу и возрасту. Контрольную группу составили 30 практически здоровых лиц в возрасте от 20 до 75 лет, М/Ж – 19/11.

Всем пациентам кроме общепринятого обследования проведена электрокардиографии (ЭКГ) и эхокардиография с подсчетом фракции выброса (ФВ), конечного диастолического объема (КДО), конечного систолического объема (КСО) и диастолического размера (КДР), конечного систолического размера (КСР), толщины задней стенки левого желудочка сердца и межжелудочковой перегородки (ТЗСЛЖ и ТМЖП), относительной толщины стенок ЛЖ (ОТСЛЖ), массы миокарда левого желудочка (ММЛЖ), индекса массы миокарда левого желудочка (ИММЛЖ, г/м²).

Оценку изменений геометрии ЛЖ осуществляли в соответствии с классификацией А. Ganau (1992), основанной на определении ИММЛЖ и ОТСЛЖ. За повышение ОТСЛЖ принимали значения 0,45 ед. и более.

Характер ремоделирования левого желудочка оценивали по соотношению показателей ОТСЛЖ и ИММЛЖ. О нормальной геометрии ЛЖ свидетельствовали показатели ОТСЛЖ (<0,45 ед.) и ИММЛЖ (< 125 г/м² у мужчин и < 110 г/м² у женщин). Концентрической считали ГЛЖ, при которой наблюдалось сочетание повышения величин ОТСЛЖ ≥ 0,45 ед., ИММЛЖ ≥125 г/м² у мужчин и ≥110 г/м² у женщин. В пользу эксцентрической ГЛЖ указывали значения ОТСЛЖ < 0,45 ед. при ИММЛЖ ≥ 125 г/м² у мужчин и ≥ 110 г/м² у женщин. Концентрическое ремоделирование констатировали в случае повышения ОТСЛЖ ≥ 0,45 ед. и значении ИММЛЖ ≤ 125 г/м² у мужчин и ≤ 110 г/м² у женщин.

Результаты и их обсуждение. Анализ признаков ГЛЖ по результатам ЭКГ показал, что частота встречаемости увеличенного индекса Соколова—Лайона, Корнельского вольтажного индекса, Корнельского вольтажного произведения оказалась выше в обеих группах, чем в контрольной группе (3, 0, 0%) и практически одинаковой в каждой из групп: без гипертонической нефропатии (44, 39, 39%) и с нефропатией (63, 61, 61%) соответственно, p<0,05. Однако частота встречаемости признаков ГЛЖ у пациентов с Гн оказалась достоверно выше по сравнению с группой без Гн (maбn. 1).

Данные эхокардиографии представлены в табл. 2. При сравнении ТМЖП и ТЗСЛЖ отмечено преобладание параметров у больных 2-й группы относительно 1-й группы: (1,17±0,03) см и (1,08±0,018) см, $(1,2\pm0,02)$ см и $(1,05\pm0,017)$ см соответственно, р<0,05. Каждая группа достоверно превосходила по данным показателям контрольную группу: ММЛЖ и ИММЛЖ преобладали во 2-й группе относительно 1-й: (208,4±7,4) г и (231,3±8,3) г, (128,3±6,5) г/м² и (118,62±9,47) г/м² (p<0,05). Обе группы имели увеличенные ММЛЖ и ИММЛЖ относительно контрольной группы (189±8,1) г и (82,2±3,3) г/м² соответственно (p<0,05) в обеих группах. КСР, КДР, КДО между группами не различались. КСО у больных ГБ с Гн был выше, а ФВ наоборот ниже, чем у пациентов без Гн. ОТСЛЖ у пациентов с Гн [(0,47±0,02) Ед] была достоверно выше, чем у пациентов без Гн [(0,41±0,02) Ед] и чем в контрольной группе [(0,26 \pm 0,02) Ед], p<0,05.

Частота повышения ИММЛЖ (табл. 3) в 1-й группе регистрируется реже [у 28 пациентов (39%)], чем во 2-й группе [у 30 (61%)], и в обеих группах выше, чем в контроле (7%), p=0,004. Таким образом, можно сделать вывод, что ГЛЖ у пациентов с Γ H встречается чаще.

Следует отметить, что у женщин с Гн повышенный ИММЛЖ встречается чаще (74%), чем у мужчин (53%) (рисунок).

Таблица 1

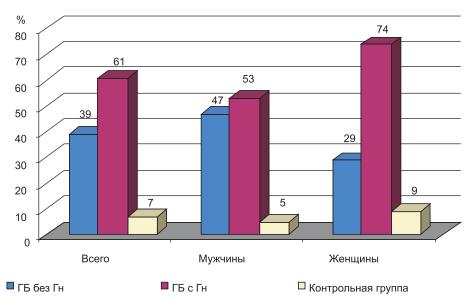
Сравнительный анализ результатов ЭКГ исследования пациентов с ГБ без гипертонической нефропатии и с нефропатией

Показатели	Группа пациентов с ГБ без Гн, n=71 (M±m)	Группа пациентов с ГБ с Гн, n=49 (M±m)	Контрольная группа, <i>n</i> =30 (M±m)	р	X ²
ЧСС, уд/мин	70±1,7	72±1,7	69±1,5	0,539	
Индекс Соколова-Лайона >37 мм, абс./%	31/44*	31/63*^	0/0	0,000	15,599
Корнельский вольтажный индекс >28 мм у мужчин и >20 мм у женщин, абс./%	28/39*	30/61*^	0/0	0,000	15,607
Корнельское вольтажное произведение ≥2440 мм×мс, <i>абс.</i> /%	28/39*	30/61*^	0/0	0,000	15,607

Условные обозначения: p – достоверность при множественном сравнении групп с помощью дисперсионного анализа; *достоверность различий с контрольной группой, p<0,05 (по z-критерию); ^достоверность различий между 1-й и 2-й подгруппами (по z-критерию).

Функциональное состояние сердечно-сосудистой системы у больных ГБ в зависимости от наличия или отсутствия гипертонической нефропатии

Показатели	Больные ГБ без Гн, <i>n</i> =71 (M±m)	Больные ГБ с Гн, n=49 (M±m)	Контрольная группа, <i>n</i> =30 (M±m)	р
КДР, см	5,13±0,05	5,13±0,09	5,1±0,05	0,954
КСР, см	3,61±0,11	3,71±0,07	3,42±0,03	0,207
КДО, мл	125,5±2,4	125,7±2,1	123,08±1,5	0,763
КСО, мл	54,8±0,8*	58,5±0,7*^	48,1±0,4	0,000
ФВ, %	56,1±0,6*	53,4±0,7*^	61,1±0,4	0,000
ТЗСЛЖ, см	1,05±0,017*	1,2±0,02*^	0,85±0,04	0,000
ТМЖП, см	1,08±0,018*	1,17±0,03*^	0,87±0,04	0,000
ОТСЛЖ, <i>Е</i> ∂	0,41±0,02*	0,47±0,02*^	0,26±0,02	0,000
ММЛЖ, г	208,4±7,4*	231,3±8,3*^	189±8,1	0,006
ИММЛЖ, г/м²	118,62±9,47*	128,3±6,5*	82,2±3,3	0,005
КИМ, см	0,13±0,002*	0,13±0,003*	0,9 ±0,003	0,000


Условные обозначения: p — достоверность при множественном сравнении групп с помощью дисперсионного анализа; *достоверность различий с контрольной группой, p<0,05 (критерий Ньюмена–Кейлса); ^достоверность различий между 1-й и 2-й подгруппами, p<0,05.

Показатели ИММЛЖ у больных ГБ с Гн и без Гн

Таблица 3

Показатели	Группа пациентов с ГБ без Гн, <i>n</i> =71	Группа пациентов с ГБ с Гн, n=49	Контрольная группа, <i>n</i> =30 (M±m)	р	X ²
Всего: ИММЛЖ > 134 г/м², абс./% ИММЛЖ< 134 г/м² , абс./%	28/39* 43/61*	30/61*^ 19/39*^	2/7 28/93	0,004 0,063	11,239 5,527
Мужчины: ИММЛЖ > 134 г/м², абс./% ИММЛЖ< 134 г/м² , абс./%	n=43 20/47* 23/53*	<i>n</i> =30 16/53* 14/47*	<i>n</i> =19 1/5 18/95	0,037 0,202	6,610 3,199
Женщины: ИММЛЖ > 110 г/м², абс./% ИММЛЖ< 110 г/м², абс./%	n=28 8/29* 20/71*	n=19 14/74*^ 5/26*^	<i>n</i> =11 1/9 10/91	0,044 0,128	6,244 4,111

Условные обозначения: p — достоверность по критерию χ^2 ; *достоверность различий с контрольной группой, p<0,05 (по z-критерию); ^достоверность различий между 1-й и 2-й подгруппами (по z-критерию).

Частота ГЛЖ у больных ГБ с Гн и без Гн

Варианты ремоделирования миокарда у пациентов с ГБ с Гн и без Гн

Показатели	Группа пациентов с ГБ без Гн, n=71	Группа пациентов с ГБ с Гн, n=49	Контрольная группа, <i>n</i> =30	р	χ²
Виды ремоделирования: нормальная геометрия (ОТС < 0,45; нор- мальный ИММЛЖ)	38/54*	14/29*	28/93	0,011	9,037
Концентрическое ремоделирование (ОТС > 0,45; нормальный ИММЛЖ)	5/7	5/10	0/0	0,241	2,849
Концентрическая гипертрофия (ОТС > 0,45; ИММЛЖ больше нормы)	25/35*	27/55*^	2/7	0,007	9,933
Эксцентрическая гипертрофия (ОТС < 0,45; ИММЛЖ больше нормы)	3/4	3/6	0/0	0,421	1,729

Условные обозначения: p — достоверность по критерию χ^2 ; *достоверность различий с контрольной группой, p<0,05 (по z-критерию); ^достоверность различий между 1-й и 2-й подгруппами (по z-критерию).

Таблица 5 Частота развития ГЛЖ и варианты ремоделирования миокарда у пациентов с ПУ и неПУ вариантами Гн

Показатели	Группа пациентов с ПУ вариантом Гн, <i>n</i> =36	Группа пациентов с неПУ вариантом Гн, <i>n</i> =13	р
Всего: ИММЛЖ > 134 г/м², абс./% ИММЛЖ< 134 г/м², абс./%	27/75 9/25	3/23 10/77	0,091 0,051
Виды ремоделирования: Нормальная геометрия (ОТС < 0,45; нормальный ИММЛЖ), абс./%	7/22	7/46	0,114
Концентрическое ремоделирование (ОТС > 0,45; нормальный ИММЛЖ), <i>абс./%</i>	2/5	3/23	0,148
Концентрическая гипертрофия (ОТС > 0,45; ИММЛЖ больше нормы), <i>абс./</i> %	26/72	1/8	0,014
Эксцентрическая гипертрофия (ОТС < 0,45; ИММЛЖ больше нормы), абс./%	1/2	2/15	0,196

Условные обозначения: p – достоверность по точному критерию Фишера, p<0,05.

Проведен сравнительный анализ групп по видам ремоделирования миокарда (mабл. 4). У 71% пациентов с нефропатией отмечается изменение геометрии миокарда, а без нефропатии — только у 46%. Изменение геометрии сердца по типу концентрической гипертрофии выявлено у 55% пациентов с нефропатией, а в группе пациентов без нефропатии — на 20% меньше, p<0,05. Остальные виды ремоделирования миокарда в группах встречались с одинаковой частотой: концентрическое ремоделирование у пациентов с ГБ без Гн и с Гн — в 7 и 10% соответственно, p>0,05, и эксцентрическая гипертрофия у 4 и 6% соответственно, p>0,05.

Для выявления частоты развития ГЛЖ при ПУ и неПУ вариантах Гн пациенты с Гн поделены на 2 подгруппы: 1-я подгруппа — пациенты с МАУ/протеинурией (n=36), 2-я группа — пациенты со сниженной СКФ<60 мл/ мин без МАУ/протеинурии (n=13). Получены следующие данные (mабn. 5): повышенный ИММЛЖ встречается в подгруппе пациентов с ПУ вариантом Гн чаще (75%), чем во 2-й подгруппе (23%). Концентрическая гипертрофия встречается у 72 % пациентов с Гн с ПУ, что намного чаще по сравнению с пациентами с неПУ вариантом (8%).

Таким образом, у больных ГБ при средней длительности заболевания 11,3 года развивается Гн, которая является негативным фактором формирования ГЛЖ и ремоделирования миокарда по типу концентрической гипертрофии. У пациентов с ПУ вариантом Гн на 52% чаще встречается изменение геометрии левого

желудочка, причем по типу концентрической гипертрофии у 72% по сравнению с неПУ вариантом у 8% у пациентов.

Заключение. У больных ГБ с Гн степень ГЛЖ и процесс ремоделирования более выражены, о чем свидетельствуют ОТСЛЖ>0,45 и увеличенный ИММЛЖ. У 71% больных с Гн отмечается изменение геометрии миокарда, а без Гн меньше на 25%. У пациентов с Гн на 20% чаще встречается концентрическая гипертрофия миокарда, что является неблагоприятным фактором сердечно-сосудистой смертности. У пациентов с ПУ вариантом Гн на 64% чаще встречается концентрическая гипертрофия миокарда по сравнению с неПУ вариантом Гн. Полученные результаты свидетельствуют о более негативном влиянии на степень ГЛЖ и процессы ремоделирования миокарда ГБ с ПУ вариантом Гн по сравнению с ГБ без Гн или неПУ вариантом.

ЛИТЕРАТУРА

- Арутюнов, Г.П. Экспериментальные модели поражения тубулоинтерстициальной ткани почек при артериальной гипертензии / Г.П. Арутюнов, А.В. Соколова, Л.Г. Оганезова / Клиническая нефрология. – 2011. – № 2. – С.75–78.
- 2. *Гоаин, Е.Е.* Артериальная гипертония и почки / Е.Е. Гогин // Терапевтический архив. 1997. № 6. С.65—68.
- Кобалава, Ж.Д. Новое в лечении артериальной гипертонии / Ж.Д. Кобалава // Практикующий врач. – 2001. – № 2. – С.1–10.
- Кобалава, Ж.Д. Значение различных методов оценки функционального состояния почек для стратификации сердечно-сосудистого риска / Ж.Д. Кобалава, С.В. Вил-

- левальде, В.С. Моисеев // Кардиология. 2007. № 12. C.74–79.
- Кутырина, И.М. Лечение почечной гипертонии / И.М. Кутырина // Русский медицинский журнал. 2001. Т. 8, № 3. С.124–127.
- Моисеев, В.С. Кардиоренальный синдром (почечный фактор и повышение риска сердечно-сосудистых заболеваний) / В.С. Моисеев, Ж.Д. Кобалава // Клиническая фармакологическая терапия. – 2002. – № 11 (3). – С.16–18.
- Мухин, Н.А. Альбуминурия маркер поражения почек и риска сердечно-сосудистых осложнений / Н.А. Мухин, Г.П. Арутюнов. В.В. Фомин // Клиническая нефрология. – 2009. – № 1. – С.5–10.
- Мухин, Н.А. Кардиоренальные взаимодействия: клиническое значение и роль в патогенезе заболеваний сердечнососудистой системы и почек / Н.А. Мухин, В.С. Моисеев, Ж.Д. Кобалава [и др.] // Терапевтический архив. 2004. № 6. С.39–46.
- Мухин, А.Н. Поражение почек при гипертонической болезни (гипертоническая нефропатия) / А.Н. Мухин, В.В. Фомин // Руководство по артериальной гипертонии / под ред. Е.И. Чазова, И.Е. Чазовой. – М.: Медиа Медика, 2005. – C.265–288.
- Мухин, Н.А. Микроальбуминурия интегральный маркер кардиоренальных взаимоотношений при артериальной гипертонии / Н.А. Мухин [и др.] // Consilium medicum. – 2007. – Т. 9. № 5. – С.13–19.
- Мухин, Н.А. Снижение скорости клубочковой фильтрации общепопуляционный маркер неблагоприятного прогноза / Н.А. Мухин // Терапевтический архив. – 2007. – № 6. – C.5–10.
- 12. *Оганов, Р.Г.* Эпидемиология артериальной гипертонии в России. Возможности профилактики / Р.Г. Оганов // Терапевтический архив. 1997. № 9. С.3–6.
- 13. *Сигитова, О.Н.* Профилактика, лечение, нефропротекция при хронической болезни почек / О.Н. Сигитова // Ремедиум. Поволжье. – 2013. – № 1. – С.28–32.
- Шилов, Е.М. Современные принципы диагностики и лечения хронической болезни почек: методическое руководство для врачей / Е.М. Шилов, М.Ю. Швецов, И.Н. Бобков. 2-е изд., испр. и доп. Саратов, 2011. С.15–26.
- К/DOQI: Клинические практические рекомендации по хроническому заболеванию почек. Оценка, классификация и стратификация. – URL: http://www.dialysis.ru/standard/ doqi-ckd/g7.htm
- Ohkubo, T. Reference values for 24-hour ambulatory blood pressure monitoring based on a prognostic criterionThe Ohasama Study / T. Ohkubo, Y. Imai, I. Tsuji [et al.] // Hypertens. – 1998. – Vol. 32. – P.255–259.

REFERENCES

 Arutyunov, G.P. Eksperimental'nye modeli porazheniya tubulointersticial'noi tkani pochek pri arterial'noi gipertenzii / G.P. Arutyunov, A.V. Sokolova, L.G. Oganezova / Klinicheskaya nefrologiya. – 2011. – № 2. – S.75–78.

- Gogin, E.E. Arterial'naya gipertoniya i pochki / E.E. Gogin // Terapevticheskii arhiv. – 1997. – № 6. – S.65–68.
- Kobalava, Zh.D. Novoe v lechenii arterial'noi gipertonii / Zh.D. Kobalava // Praktikuyuschii vrach. – 2001. – № 2. – S 1–10
- Kobalava, Zh.D. Znachenie razlichnyh metodov ocenki funkcional'nogo sostoyaniya pochek dlya stratifikacii serdechno-sosudistogo riska / Zh.D. Kobalava, S.V. Villeval'de, V.S. Moiseev // Kardiologiya. – 2007. – № 12. – S.74–79.
- Kutyrina, I.M. Lechenie pochechnoi gipertonii / I.M. Kutyrina // Russkii medicinskii zhurnal. – 2001. – T. 8, № 3. – S.124– 127.
- Moiseev, V.S. Kardiorenal'nyi sindrom (pochechnyi faktor i povyshenie riska serdechno-sosudistyh zabolevanii) / V.S. Moiseev, Zh.D. Kobalava // Klinicheskaya farmakologicheskaya terapiya. – 2002. – № 11 (3). – S.16–18.
- Muhin, N.A. Al'buminuriya marker porazheniya pochek i riska serdechno-sosudistyh oslozhnenii / N.A. Muhin, G.P. Arutyunov. V.V. Fomin // Klinicheskaya nefrologiya. – 2009. – № 1. – S.5–10.
- Muhin, N.A. Kardiorenal'nye vzaimodeistviya: klinicheskoe znachenie i rol' v patogeneze zabolevanii serdechno-sosudistoi sistemy i pochek / N.A. Muhin, V.S. Moiseev, Zh.D. Kobalava [i dr.] // Terapevticheskii arhiv. – 2004. – № 6. – S.39–46.
- Muhin, A.N. Porazhenie pochek pri gipertonicheskoi bolezni (gipertonicheskaya nefropatiya) / A.N. Muhin, V.V. Fomin // Rukovodstvo po arterial'noi gipertonii / pod red. E.I. Chazova, I.E. Chazovoi. – M.: Media Medika, 2005. – S.265–288.
- Muhin, N.A. Mikroal'buminuriya integral'nyi marker kardiorenal'nyh vzaimootnoshenii pri arterial'noi gipertonii / N.A. Muhin [i dr.] // Consilium medicum. – 2007. – T. 9, № 5. – S.13–19.
- Muhin, N.A. Snizhenie skorosti klubochkovoi fil'tracii obschepopulyacionnyi marker neblagopriyatnogo prognoza / N.A. Muhin // Terapevticheskii arhiv. – 2007. – № 6. – S.5–10.
- Oganov, R.G. Epidemiologiya arterial'noi gipertonii v Rossii. Vozmozhnosti profilaktiki / R.G. Oganov // Terapevticheskii arhiv. – 1997. – № 9. – S.3–6.
- Sigitova, O.N. Profilaktika, lechenie, nefroprotekciya pri hronicheskoi bolezni pochek / O.N. Sigitova // Remedium. Povolzh'e. – 2013. – № 1. –S.28–32.
- 14. Shilov, E.M. Sovremennye principy diagnostiki i lecheniya hronicheskoi bolezni pochek: metodicheskoe rukovodstvo dlya vrachei / E.M. Shilov, M.Yu. Shvecov, I.N. Bobkov. – 2-e izd., ispr. i dop. – Saratov, 2011. – S.15–26.
- K/DOQI: Klinicheskie prakticheskie rekomendacii po hronicheskomu zabolevaniyu pochek. Ocenka, klassifikaciya i stratifikaciya. – URL: http://www.dialysis.ru/standard/doqickd/q7.htm
- Ohkubo, T. Reference values for 24-hour ambulatory blood pressure monitoring based on a prognostic criterionThe Ohasama Study / T. Ohkubo, Y. Imai, I. Tsuji [et al.] // Hypertens. – 1998. – Vol. 32. – P.255–259.