- Postnov, Yu.V. O roli nedostatochnosti mitohondrial'nogo energoobrazovaniya v razvitii pervichnoi gipertenzii: neirogennaya sostavlyayuschaya patogeneza gipertenzii / Yu.V. Postnov // Kardiologiya. 2004. № 6. S. 52-58.
- Ребров, В.Г. Исследования электрических свойств поверхности клеток: учеб. пособие / В.Г. Ребров. – 2009. – С. 1–8.
 - Rebrov, V.G. Issledovaniya elektricheskih svoistv poverhnosti kletok: ucheb. posobie / V.G. Rebrov. 2009. S. 1–8.
- 7. Хасанов, Н.Р. Оценка роли глутаматовой системы в регуляции артериального давления у больных гипертонической болезнью методом молекулярно-генетического анализа / Н.Р. Хасанов, Д.Р. Хасанова, В.Н. Ослопов // Практическая медицина. 2012 (in press). Hasanov, N.R. Ocenka roli glutamatovoi sistemy v regulyacii arterial'nogo davleniya u bol'nyh gipertonicheskoi bolezn'yu metodom molekulyarno-geneticheskogo analiza / N.R. Hasanov, D.R. Hasanova, V.N. Oslopov // Prakticheskaya medicina. 2012 (in press).
- Beard, K.M. Metabolism, not autoxidation, plays a role in alpha-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: relevance for diabetes mellitus / K.M. Beard, N. Shangari, B. Wu [et al.] // Molecular and cellular biochemistry. – 2003. – Vol. 252. – P. 331–338.
- Crouch, M.S.P. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity / M.S.P. Crouch, R. Kozlowski, J.K. Slater, J. Fletcher // J. Immunol. Methods. – 1993. – Vol. 160(1). – P. 81–88.
- Eltzschig, H.K. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function / H.K. Eltzschig, T. Eckle, A. Mager [et al.] // Circ. Res. – 2006. – Vol. 99(10). – P. 1100–1108.

- Goodacre, R. In Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis / R. Goodacre, D.B. Kell, G.G. Harrigan, R. Goodacre eds. – Kluwer Academic Publishers: Boston, 2003. – P. 337.
- Iost, R.M. Electrochemical nano(bio)sensors: advances, diagnosis and monitoring of diseases / R.M. Iost, W.C. da Silva, J.M. Madurro [et al.] // Front Biosci (Elite Ed). – 2011. – Vol. 1(3). – P. 663–689.
- 13. *Liu, H.* Glutathione metabolism during aging and in Alzheimer disease / H. Liu, H. Wang, S. Shenvi [et al.] // Ann. N.Y. Acad. Sci. 2004. Vol. 1019. P. 346–349.
- Polidoro, G. Superoxide dismutase, reduced glutathione and TBA-reactive products in erythrocytes of patients with multiple sclerosis / G. Polidoro, C. Di Ilio, A. Arduni [et al.] // The international journal of biochemistry. – 1984. – Vol. 16(5). – P. 505–509.
- Repetto, M. Oxidative stress in blood of HIV infected patients / M. Repetto, C. Reides, M.L. Gomez Carretero [et al.] // Clin. Chim. Acta. – 1996. – Vol. 255. – P. 107–117.
- Stoltz, J.F. Electrochemical properties of platelets: clinical and pharmacological applications / J.F. Stoltz // Ann. NYAS. – 1983. – Vol. 416. – P. 720–741.
- Subapriya, R. Oxidant-antioxidant status in patients with oral squamous cell carcinomas at different intraoral sites / R. Subapriya, R. Kumaraguruparan, C.R. Ramachandran, S. Nagini // Clin.Biochem. – 2002. – Vol. 35. – P. 489– 493.
- 18. Wilson, W.W. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements / W.W. Wilson, M.M. Wade, S.C. Holman, F.R. Champlin // J. of Microbiol. Meth. – 2001. – № 43. – P. 153–164.

© Кадыров Р.К., 2012

УДК 616.37-005.4:615.272

ВЛИЯНИЕ КСИМЕДОНА НА ДЕСТРУКТИВНЫЕ ИЗМЕНЕНИЯ В ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЕ, ВЫЗВАННЫЕ ИШЕМИЕЙ

РЕНАТ КАРИМОВИЧ КАДЫРОВ, канд. мед. наук, ассистент кафедры нормальной анатомии ГБОУ ВПО «Казанский государственный медицинский университет» Минздравсоцразвития РФ, тел. 8-903-314-76-95, e-mail: kadrenat59@mail.ru

Реферат. Целью данного исследования было изучение структуры поджелудочной железы на разных сроках ишемии при предварительном введении ксимедона. Исследование проведено с помощью гистологических методов, а также методов ЭПР- и ЯМР-спектроскопии. Установлено, что при внутрибрюшинном введении ксимедона в дозе 3,3 мг/кг ишемические повреждения в структуре поджелудочной железы кошки развиваются медленнее, чем без применения ксимедона. Исходя из вышеизложенного, следует предложить использование ксимедона в качестве протекторного средства в комплексном лечении ишемических панкреонекрозов.

Ключевые слова: ксимедон, поджелудочная железа, ишемия, ЭПР-спектроскопия, ЯМР-спектроскопия.

EFFECT OF XYMEDONE ON DESTRUCTIVE CHANGES IN THE PANCREAS CAUSED BY ISCHEMIA

R.K. KADYROV

Abstract. Studying of structure of a pancreas on different terms of an ischemia at preliminary introduction xymedone was an objective of this research. Research is spent by means of histologic methods, and also methods $3\Pi P-and NMR-spectroscopy$. It is established that at introperitoneal introduction xymedone in a 3,3mg/kg dose ischemic damages to structure of a pancreas of a cat develop more slowly, than without application xymedone. Proceeding from the above-stated, it is necessary to offer use xymedone in quality protector means in complex treatment ischemic pancreatic necrosis.

Key words: xymedon, pancreas, ischemia, EPR-spectroscopy, NMR-spectroscopy.

проблема ишемического повреждения поджелудочной железы, а также необходимость максимального уменьшения выраженности ишемической деструкции остается одной из самых

актуальных и недостаточно изученных в медицине. Перспективным в этом направлении может оказаться подход с фармакологической коррекцией ишемических повреждений, что активно используется

в клинике при лечении последствий ишемии ряда органов.

Поскольку основными патогенетическими звеньями ишемических повреждений являются активация перекисного окисления липидов и усиление апоптоза, то и поиск антиишемических средств должен быть проведен среди факторов, уменьшающих интенсивность этих процессов или устраняющих их. В настоящее время для решения этой проблемы используют широкий спектр препаратов, таких как антиоксиданты, блокаторы различных ферментов, препараты, улучшающие микроциркуляцию и т.д. В последние годы на различных моделях были изучены протекторные свойства представителя группы пиридиновых оснований 1,2-дигидро-4,6-диметил-N-(β-оксиэтил)-пиримидона-2, т.е. ксимедона, который обладает антиоксидантным и апоптозрегулирующим действием [4], стимулирующим регенерацию, противовоспалительным, противоожоговым [2], антимутагенным, иммуномодулирующим [9]. Есть данные, подтверждающие положительный эффект ксимедона в лечении остеомиелита [4], трофических язв [3], склеродермии [6], атопической бронхиальной астмы [7], перитонита [1], синуситов [5], туберкулеза [7]. Вместе с тем не исследованы противоишемические эффекты ксимедона. Неясно, сможет ли ксимедон защитить поджелудочную железу от губительных последствий ишемии.

Целью данного исследования было изучение структуры поджелудочной железы на разных сроках нарушения артериального кровообращения при предварительном введении ксимедона.

В качестве объекта исследования была выбрана кошка, так как ангиоархитектоника сосудов поджелудочной железы напоминает таковую у человека. Исследования проведены на 30 кошках массой от 2,25 кг до 3,75 кг, возраст от 2 до 4 лет, 14 самцов, 16 самок. Животные были разделены на группы. Первая группа в количестве 15 особей была предназначена для морфологических исследований поджелудочной железы на разных сроках ишемии, а также электроннопарамагнитно-резонансной (ЭПР) и ядерно-магнитнорезонансной (ЯМР) спектроскопии. Во второй группе на поджелудочной железе 15 кошек проводились морфологические исследования, а также ЭПР- и ЯМРспектроскопия на разных сроках ишемии при предварительном введении ксимедона.

За 30 мин до оперативного вмешательства внутрибрюшинно вводили ксимедон из расчета 3,3 мг/кг, далее внутримышечно — рометар в дозе 0,2 мл/кг, через 30 мин срединной лапаротомией вскрывалась брюшная полость. В операционную рану выводили желудок, печень, выделяли и перевязывали чревную и краниальную брыжеечную артерии на различные сроки от 0 до 90 мин (сроки перевязки сосудов 5, 15, 30, 60, 90 мин).

Из различных отделов поджелудочной железы (головка, тело, хвост) вырезались кусочки размером 0,5 см³. Полученный таким образом материал разрезали на 2 части. Одну половину фиксировали в 10% нейтральном формалине по Лилли или жидкости Карнуа и после соответствующей проводки (обезвоживание в спиртах возрастающей концентрации и замещение спирта ксилолом) заливали в парафин. Вторую половину использовали для изготовления криостатных срезов и электронной микроскопии.

При ЭПР-спектроскопии ишемизированные кусочки поджелудочной железы подвергались замораживанию жидким азотом и стандартизировались с помощью пресс-формы. Спектры ЭПР регистрировались на ЭПР спектрометре SE/X-2544 фирмы «Радиопан» (Польша) с рабочей частотой 9400 мГц (Х-диапазон), шириной протяжки магнитного поля 2000 гаусс. Сигнал ЭПР записывался в виде первой производной линии максимального наклона в миллитеслах (мТ) поглощения. Полуширина линии измерялась между точками максимального наклона. Для сравнительной оценки спектров ЭПР был выбран g-фактор (точка наивысшего резонанса).

ЯМР-спектроскопия проводилась при комнатной температуре на ЯМР-спектрометре MSL-400 фирмы «Брукер» (Германия), на частоте 161,9 мГц, магнитное поле – 9,395 тесла. После экспериментальной ишемии поджелудочная железа извлекалась из брюшной полости, разрезалась на кусочки, которые стандартизировались по объему пробирки. Тотчас же проводилась ЯМР-спектроскопия. Нами исследованы образцы поджелудочной железы в контроле и далее через 5, 15, 30, 60, 90 мин ишемии. В ЯМР-спектрах тканей определялись неорганический фосфор (+5ppm) и фосфокреатин (0ppm). Была прослежена их динамика в зависимости от степени ишемии органа.

Полученные спектры идентифицировались в сравнении со спектрами, полученными F. Wehrli и W. Semmler [10,11].

Результаты ЭПР- и ЯМР-спектров оценивали в условных единицах (1 условная единица = 1 мм). Статистическую обработку проводили по тестам Student. Различия между экспериментальными данными считали достоверными, если *p*≥0,95. Результаты представлены как среднее значение ± средняя ошибка.

Исследование животных производили согласно международным и российским этическим нормам.

Установлено, что при внутрибрюшинном введении ксимедона в дозе 3,3 мг/кг ишемические повреждения в структуре поджелудочной железы кошки развиваются медленнее, чем без применения ксимедона. Так, например, очаги некроза, возникающие в паренхиме поджелудочной железы через 60 мин ишемии (рис. 1), на фоне ксимедона отсутствуют. Заметен лишь периваскулярный и перицеллюлярный отек (рис. 2).

Метод ЯМР-спектроскопии выявляет в нормальной поджелудочной железе кошки интенсивный сигнал от фосфокреатина и незначительный сигнал от неорганического фосфата. По мере развития ишемических процессов происходит снижение интенсивности сиг-

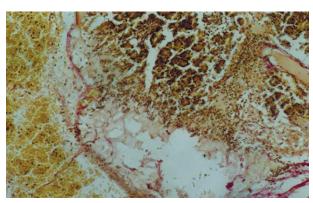


Рис. 1. Очаг некроза в ткани поджелудочной железы кошки через 60 мин ишемии. Окраска по Ван-Гизону, × 100

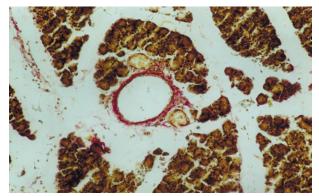


Рис. 2. Поджелудочная железа кошки. Периваскулярный и перицеллюлярный отек через 60 мин ишемии на фоне действия ксимедона. Окраска по Ван-Гизону, × 200

нала от фосфокреатина и увеличение интенсивности сигнала от неорганического фосфата, что говорит об ухудшении энергетического метаболизма. Динамика ЯМР-спектров поджелудочной железы на фоне ишемии отражена на рис. 3.

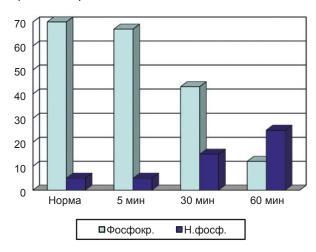


Рис. 3. Динамика изменений ЯМР-спектров поджелудочной железы кошки через 5, 30, 60 мин ишемии

При предварительном введении ксимедона в дозе 3,3 мг/кг внутрибрюшинно интенсивность сигнала от фофокреатина достоверно уменьшается, а интенсивность сигнала от неорганического фосфата достоверно увеличивается по сравнению с нормой только через 30 мин ишемии (рис. 4).

С помощью ЭПР-спектроскопии в нормальной поджелудочной железе кошки удалось определить сигналы с g-факторами 1,94, 1,92 и 1,89, исходящими от железосерных белков, а также сигнал с g-фактором 2,025, исходящим от окисленного центра сукцинатко-энзимредуктазы.

С увеличением времени воздействия ишемии и по мере развития ишемических повреждений отмечается увеличение интенсивности сигналов от железосерных белков, а также снижение интенсивности сигнала от окисленного центра сукцинаткоэнзимредуктазы, что отражено на *рис.* 5. Это свидетельствует об усилении негативных процессов в митохондриальной дыхательной цепи.

При предварительном внутрибрюшинном введении ксимедона в дозе 3,3 мг/кг только через 30 мин ишемии наблюдается заметное снижение сигнала от окисленного центра сукцинаткоэнзимредуктазы (g-фактор 2,025)

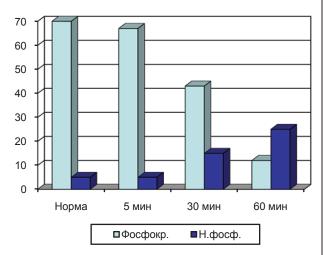


Рис. 4. Динамика изменений ЯМР-спектров поджелудочной железы кошки через 5, 30, 60 мин ишемии на фоне применения ксимедона

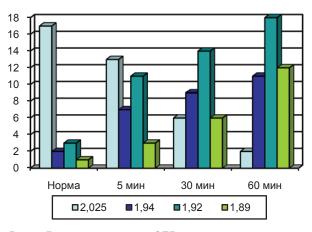


Рис. 5. Динамика изменений ЭПР-спектров поджелудочной железы кошки через 5, 30, 60 мин ишемии

и увеличение интенсивности сигнала от железосерных белков (g-фактор 1,94, 1,92, 1,89). Динамика вышеуказанных изменений отражена на *puc*. 6.

Таким образом, внутрибрюшинное применение ксимедона в минимальной дозе 3,3 мг/кг полностью не предотвращает повреждения тканей поджелудочной

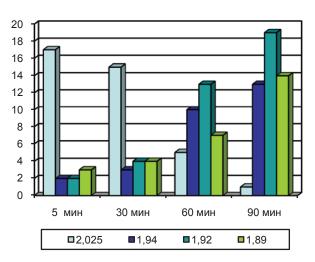


Рис. 6. Динамика изменений ЭПР-спектров поджелудочной железы кошки через 5, 30, 60 мин ишемии на фоне ксимедона

железы в результате ишемии, но значительно уменьшает их выраженность, продлевает срок устойчивости тканей к ишемии.

Экспериментально установленная противоишемическая способность ксимедона позволяет использовать его в качестве лекарственного средства в комплексной терапии ишемических панкреонекрозов в хирургической клинике.

ЛИТЕРАТУРА

- Власов, А.П. Влияние антиоксидантов на интоксикацию при экспериментальном перитоните / А.П. Власов, Т.В. Тарасова, Г.Н. Судакова // Экспериментальная клиническая фармакология. 2000. № 63(6). С. 58–61.
 Vlasov, A.P. Vliyanie antioksidantov na intoksikaciyu pri eksperimental'nom peritonite / A.P. Vlasov, T.V. Tarasova, G.N. Sudakova // Eksperimental'naya klinicheskaya farmakologiya. 2000. № 63(6). S. 58–61.
- Измайлов, С.Г. Доклиническое исследование ксимедона / С.Г. Измайлов [и др.] // Антибиотики и химиотерапия. 1999. № 8. С. 12–17.
 Izmailov, S.G. Doklinicheskoe issledovanie ksimedona / S.G. Izmailov [i dr.] // Antibiotiki i himioterapiya. 1999. № 8. S. 12–17.
- 3. Измайлов, Г.А. Применение ксимедона в лечении трофических язв нижних конечностей / Г.А. Измайлов, Г.Б. Евранова, С.Г. Измайлов // Вестник хирургии. 1993. № 151 (7–12). С. 43–46. Izmailov, G.A. Primenenie ksimedona v lechenii troficheskih yazv nizhnih konechnostei / G.A. Izmailov, G.B. Evranova, S.G. Izmailov // Vestnik hirurgii. 1993. № 151 (7–12). —
- Малышев, К.В. Антиоксидантная терапия ксимедоном у больных хроническим остеомиелитом / К.В. Малышев // Вестник хирургии. 2000. № 159(4). С. 59–63. Malyshev, K.V. Antioksidantnaya terapiya ksimedonom u bol'nyh hronicheskim osteomielitom / K.V. Malyshev // Vestnik hirurgii. 2000. № 159(4). S. 59–63.
- Мосихин, С.Б. Действие ксимедона на течение экспериментального синусита (иммуногистохимическое исследование) / С.Б. Мосихин, Д.Э. Цыплаков, А.С. Лопатин // Российская ринология. 2006. № 1. С. 26–29.

- Mosihin, S.B. Deistvie ksimedona na techenie eksperimental'nogo sinusita (immunogistohimicheskoe issledovanie) / S.B. Mosihin, D.E. Cyplakov, A.S. Lopatin // Rossiiskaya rinologiya. 2006. № 1. S. 26–29.
- Салихов, И.Г. Ксимедон-электрофорез в реабилитации больных системной склеродермией / И.Г. Салихов, Р.А. Бодрова, Л.Е. Зиганшина // Вопросы курортологии, физиотерапии и лечебной физкультуры. 2002. № 5. С. 33–36. Salihov, I.G. Ksimedon-elektroforez v reabilitacii bol'nyh sistemnoi sklerodermiei / I.G. Salihov, R.A. Bodrova, L.E. Ziganshina // Voprosy kurortologii, fizioterapii i lechebnoi fizkul'tury. 2002. № 5. S. 33–36.
- Скороходкина, О.В. Иммунофармакологическая активность ксимедона у больных с атопической бронхиальной астмой / О.В. Скороходкина, А.П. Цибулькин, В.Н. Цибулькина // Экспериментальная клиническая фармакология. 2004. № 67(5). С. 31–33. Skorohodkina, O.V. Immunofarmakologicheskaya aktivnost' ksimedona u bol'nyh s atopicheskoi bronhial'noi astmoi / O.V. Skorohodkina, A.P. Cibul'kin, V.N. Cibul'kina //
- 7 O.V. Skorohodkina, A.P. Cibul'kin, V.N. Cibul'kina // Eksperimental'naya klinicheskaya farmakologiya. 2004. № 67(5). S. 31–33. Слабнов, И.Д. Применение ксимедона в качестве системного иммуномодулятора при деструктивном туберкулезе
- легких / И.Д. Слабнов, А.А. Визель, Г.В. Черепнев // Проблемы туберкулеза. 2000. № 3. С. 28–32. Slabnov, I.D. Primenenie ksimedona v kachestve sistemnogo immunomodulyatora pri destruktivnom tuberkuleze legkih / I.D. Slabnov, A.A. Vizel', G.V. CHerepnev // Problemy tuberkuleza. 2000. № 3. S. 28–32.
- 9. Черепнев, Г.В. Потенциальная роль антимутагенного эффекта препарата ксимедона в модификации иммунореактивности / Г.В. Черепнев, К.В. Малышев, Ю.Д. Слабнов [и др.] // Клиническая фармакология и терапия. 2000. № 6. С. 79—81.

 Cherepnev, G.V. Potencial'naya rol' antimutagennogo effekta preparata ksimedona v modifikacii immunoreaktivnosti / G.V. Cherepnev, K.V. Malyshev, Yu.D. Slabnov [i dr.] // Klinicheskaya farmakologiya i terapiya. 2000. № 6. S. 79—81.
- Semmler, W. In vivo magnetic resonance spectroscopy: basic principles and clinical applications in oncology / W. Semmler. – Deutsches Krebsforschungszentrum Heidelberg, 2005. – P. 15.